organic compounds

 $\mu = 0.21 \text{ mm}^{-1}$

 $0.35 \times 0.33 \times 0.30$ mm

T = 170 K

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

9-[3-(Dimethylamino)propyl]-2-trifluoromethyl-9*H*-thioxanthen-9-ol

Jerry P. Jasinski,^a* James A. Golen,^a M. S. Siddegowda,^b H. S. Yathirajan^b and M. T. Swamy^c

^aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^cDepartment of Chemistry, Sambhram Institute of Technology, Bangalore 560 097, India Correspondence e-mail: jjasinski@keene.edu

Received 23 June 2011; accepted 27 June 2011

Key indicators: single-crystal X-ray study; T = 170 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.043; wR factor = 0.116; data-to-parameter ratio = 15.3.

In the title compound, $C_{19}H_{20}F_3NOS$, the dihedral angle between the mean planes of the two benzene rings attached to the thioxanthene ring is 41.8 (7)°; the latter has a slightly distorted boat conformation. The F atoms are disordered over three sets of sites [occupancy ratio = 0.564 (10): 0.287 (10):0.148 (5)] and the methyl groups are disordered over two sets of sites [occupancy ratio = 0.72 (4):0.28 (4)]. The crystal packing is stabilized by O-H···N and C-H···S hydrogen bonds and weak C-H···Cg interactions.

Related literature

For photo-initiators with excellent capabilities in UV-curing materials, see: Fouassier *et al.* (1995); Roffey (1997). For related structures, see: Post *et al.* (1975*a,b*); Liu, (2009). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data C₁₉H₂₀F₃NOS

 $C_{19}H_{20}F_3NOS$ $M_r = 367.42$ Monoclinic, $P2_1/n$

a = 7.6183 (3) Å
b = 13.9605 (4) Å
c = 17.4172 (7) Å

 $\beta = 101.053 (4)^{\circ}$ $V = 1818.05 (11) Å^{3}$ Z = 4Mo K α radiation

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2010) $T_{\rm min} = 0.929, T_{\rm max} = 0.939$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.116$ S = 1.054697 reflections 306 parameters 238 restraints 3901 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.022$

17330 measured reflections

4697 independent reflections

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.28 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

Cg2 and Cg3 are the centroids of the C2-C7 and C8-C13 rings, respectively.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$O1 - H1A \cdots N1$ 0.87 (2) 1.84 (2) 2.7141 (17) 176 (2)	$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 01 - H1A \cdots N1 \\ C15 - H15A \cdots S1 \\ C5 - H5A \cdots Cg3^{ii} \\ C17 - H17A \cdots Cg2^{ii} \\ C17 - H17B \cdots Cg3^{ii} \end{array}$	0.87 (2) 0.99 0.95 0.99 0.99	1.84 (2) 2.76 2.96 2.97 2.83	2.7141 (17) 3.4165 (15) 3.798 (3) 3.949 (3) 3.659 (3)	176 (2) 124 148 170 142

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x - 1, y, z.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

MSS thanks the University of Mysore and R. L. Fine Chem, Bangalore, for access to their research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2761).

References

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Fouassier, J. P., Ruhlmann, D., Graff, D., Morlet-Savary, F. & Wieder, F. (1995). Prog. Org. Coat. 25, 235–271.

Liu, G. (2009). Acta Cryst. E65, o613.

- Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Post, M. L., Kennard, O. & Horn, A. S. (1975a). Acta Cryst. B31, 2724–2726. Post, M. L., Kennard, O., Sheldrick, G. M. & Horn, A. S. (1975b). Acta Cryst.
- B**31**, 236–2368.
- Roffey, C. (1997). In *Photogeneration of Reactive Species for UV-Curing*. Sussex, England: Wiley.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2011). E67, o1883 [doi:10.1107/S1600536811025311]

9-[3-(Dimethylamino)propyl]-2-trifluoromethyl-9H-thioxanthen-9-ol

J. P. Jasinski, J. A. Golen, M. S. Siddegowda, H. S. Yathirajan and M. T. Swamy

Comment

The title compound is a flupenthixol impurity with systematic IUPAC name: (*RS*)-9-[3-(dimethylamino)propyl]-2-(trifluoromethyl)-9H-thioxanthen-9-ol. Flupenthixol is a thioxanthene derivative that may exist in two isomeric forms, α and β . Flupenthixol contains 45-55 % α -flupenthixol. The pharmacological effects of flupenthixol, α - and β -flupenthixol have been compared with those of clopenthixol, chlorprothixene, fluphenazine, perphenazine, chlorpromazine and haloperidol. In most pharmacological screening tests α -flupenthixol was equipotent with fluphenazine. β -Flupenthixol showed very low pharmacological activity. As expected the potency of flupenthixol was about one half that of α -flupenthixol. Thioxanthone derivatives are good photoinitiators with excellent capabilities in UV-curing materials (Fouassier *et al.*, 1995; Roffey, 1997). The crystal structures of α -flupenthixol (Post *et al.*, 1975*b*), β -flupenthixol (Post *et al.*, 1975*a*) and 2,4-diethylthioxanthen-9-one (Liu, 2009) have been reported. In view of the importance of the title compound the crystal structure is herein reported.

In the title compound, (I), the dihedral angle between the mean planes of the two benzene rings in the thioxanthene ring is 41.8 (7) ° (Fig. 1). The thioxanthene ring is in a slightly distorted boat conformation (Cremer & Pople, 1975) with puckering parameters Q, θ , and $\phi = 0.591$ (2) Å, 92.72 (19) ° and 359.8 (2) °, respectively). Crystal packing is stabilized by O1—H1A···N1, C15—H15A···S1 hydrogen bonds and weak C—H···Cg intermolecular interactions (Fig. 2, Table 1).

Experimental

The title compound was obtained as a gift sample from R. L. Fine Chem. Ltd., Bangalore, India. The compound was recrystallized from dichloromethane (*M*.pt.: 389–391 K).

Refinement

The fluorine atoms on C14 are disordered over three positions [occupancy ratio 0.564 (10); 0.287 (10); 0.148 (5)] and the methyl groups on N1 are disordered over two positions [occupancy ratio 0.72 (4); 0.28 (4)]. The O–H hydrogen atom was located by Fourier analysis and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with atom–H lengths of 0.95 Å (CH), 0.99 Å (CH₂) or 0.98 Å (CH₃). Isotropic displacement parameters for these atoms were set to 1.18-1.20 (CH) or 1.20 (CH₂) times U_{eq} of the parent atom.

Figures

Fig. 1. Molecular structure of (I) showing the atom labeling scheme and 50% probability displacement ellipsoids.

Fig. 2. Packing diagram of the title compound viewed down the *a* axis. Dashed lines represent disordered C—F atoms.

9-[3-(Dimethylamino)propyl]-2-trifluoromethyl-9H-thioxanthen-9-ol

F(000) = 768

 $\theta = 3.3 - 32.3^{\circ}$

 $\mu = 0.21 \text{ mm}^{-1}$ T = 170 K

Block, pale yellow $0.35 \times 0.33 \times 0.30$ mm

 $D_{\rm x} = 1.342 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9234 reflections

Crystal data

C₁₉H₂₀F₃NOS $M_r = 367.42$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 7.6183 (3) Å b = 13.9605 (4) Å c = 17.4172 (7) Å $\beta = 101.053$ (4)° V = 1818.05 (11) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer	4697 independent reflections
Radiation source: Enhance (Mo) X-ray Source	3901 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.022$
Detector resolution: 16.1500 pixels mm ⁻¹	$\theta_{\text{max}} = 28.7^{\circ}, \ \theta_{\text{min}} = 3.5^{\circ}$
ω scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2010)	$k = -18 \rightarrow 15$
$T_{\min} = 0.929, \ T_{\max} = 0.939$	$l = -23 \rightarrow 23$
17330 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.116$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.05	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0506P)^{2} + 0.6042P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4697 reflections	$(\Delta/\sigma)_{\rm max} = 0.037$
306 parameters	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$

238 restraints

$$\Delta \rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
S1	0.74858 (6)	0.83313 (3)	0.17618 (2)	0.04558 (12)	
F1	0.6729 (8)	0.6443 (4)	0.5165 (2)	0.0783 (14)	0.564 (10)
F2	0.9343 (6)	0.5995 (5)	0.5119 (4)	0.0815 (15)	0.564 (10)
F3	0.7169 (10)	0.5137 (4)	0.4572 (4)	0.0765 (16)	0.564 (10)
F1A	0.6033 (13)	0.6017 (10)	0.4888 (7)	0.078 (2)	0.287 (10)
F2A	0.8891 (19)	0.6238 (7)	0.5244 (5)	0.072 (3)	0.287 (10)
F3A	0.7863 (16)	0.5067 (7)	0.4533 (7)	0.059 (2)	0.287 (10)
F1B	0.5941 (16)	0.5562 (12)	0.4648 (6)	0.070 (3)	0.148 (5)
F2B	0.785 (3)	0.6465 (10)	0.5293 (6)	0.075 (3)	0.148 (5)
F3B	0.864 (2)	0.5254 (12)	0.4705 (10)	0.091 (4)	0.148 (5)
01	0.50685 (14)	0.54112 (7)	0.18448 (6)	0.0369 (2)	
H1A	0.408 (3)	0.5332 (16)	0.2017 (13)	0.070 (6)*	
N1	0.19359 (19)	0.52532 (10)	0.23591 (10)	0.0543 (4)	
C1	0.54324 (17)	0.63994 (9)	0.17934 (8)	0.0316 (3)	
C2	0.65553 (17)	0.67633 (9)	0.25587 (8)	0.0319 (3)	
C3	0.66939 (18)	0.62297 (10)	0.32396 (8)	0.0346 (3)	
H3A	0.6162	0.5612	0.3220	0.041*	
C4	0.7599 (2)	0.65865 (11)	0.39484 (9)	0.0410 (3)	
C5	0.8404 (2)	0.74815 (12)	0.39867 (10)	0.0501 (4)	
H5A	0.8989	0.7732	0.4476	0.060*	
C6	0.8350 (2)	0.80039 (12)	0.33140 (10)	0.0473 (4)	
H6A	0.8935	0.8607	0.3334	0.057*	
C7	0.74356 (18)	0.76466 (10)	0.26013 (9)	0.0363 (3)	
C8	0.7353 (2)	0.74071 (11)	0.10656 (9)	0.0406 (3)	
C9	0.8206 (3)	0.75615 (14)	0.04376 (11)	0.0562 (4)	
H9A	0.8784	0.8155	0.0388	0.067*	
C10	0.8210 (3)	0.68539 (17)	-0.01102 (12)	0.0683 (6)	
H10A	0.8778	0.6962	-0.0543	0.082*	
C11	0.7391 (3)	0.59858 (16)	-0.00345 (11)	0.0641 (5)	
H11A	0.7412	0.5494	-0.0410	0.077*	
C12	0.6541 (2)	0.58328 (13)	0.05899 (9)	0.0478 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H12A	0.5992	0.5231	0.0642	0.057*	
C13	0.64777 (18)	0.65429 (10)	0.11405 (8)	0.0363 (3)	
C14	0.7655 (3)	0.60126 (14)	0.46712 (10)	0.0534 (4)	
C15	0.36815 (18)	0.69875 (11)	0.15859 (9)	0.0411 (3)	
H15A	0.4009	0.7658	0.1494	0.049*	
H15B	0.2994	0.6740	0.1085	0.049*	
C16	0.2439 (2)	0.69987 (11)	0.21787 (11)	0.0489 (4)	
H16A	0.3181	0.6992	0.2712	0.059*	
H16B	0.1758	0.7607	0.2119	0.059*	
C17	0.1118 (2)	0.61725 (12)	0.21095 (12)	0.0525 (4)	
H17A	0.0208	0.6320	0.2429	0.063*	
H17B	0.0494	0.6119	0.1558	0.063*	
C18	0.2274 (12)	0.5222 (12)	0.3225 (4)	0.095 (2)	0.72 (4)
H18A	0.3144	0.5718	0.3435	0.142*	0.72 (4)
H18B	0.2749	0.4591	0.3404	0.142*	0.72 (4)
H18C	0.1153	0.5336	0.3407	0.142*	0.72 (4)
C19	0.0843 (17)	0.4459 (7)	0.2028 (8)	0.100 (3)	0.72 (4)
H19A	0.0712	0.4470	0.1457	0.150*	0.72 (4)
H19B	-0.0339	0.4509	0.2169	0.150*	0.72 (4)
H19C	0.1412	0.3857	0.2232	0.150*	0.72 (4)
C18A	0.224 (3)	0.5017 (14)	0.3172 (8)	0.067 (4)	0.28 (4)
H18D	0.2296	0.4320	0.3234	0.101*	0.28 (4)
H18E	0.1268	0.5272	0.3406	0.101*	0.28 (4)
H18F	0.3380	0.5298	0.3435	0.101*	0.28 (4)
C19A	0.061 (2)	0.4530 (13)	0.1931 (10)	0.051 (4)	0.28 (4)
H19D	0.0576	0.4581	0.1367	0.076*	0.28 (4)
H19E	-0.0578	0.4659	0.2041	0.076*	0.28 (4)
H19F	0.0989	0.3882	0.2108	0.076*	0.28 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0509 (2)	0.03275 (19)	0.0553 (2)	-0.00550 (15)	0.01586 (18)	0.00201 (15)
F1	0.089 (3)	0.098 (3)	0.055 (2)	0.031 (2)	0.032 (2)	0.0041 (17)
F2	0.0630 (17)	0.098 (4)	0.072 (3)	0.0147 (17)	-0.0148 (16)	0.020 (2)
F3	0.112 (4)	0.062 (2)	0.0513 (16)	-0.017 (3)	0.005 (3)	0.0106 (15)
F1A	0.084 (4)	0.102 (6)	0.061 (5)	0.024 (4)	0.041 (3)	0.013 (4)
F2A	0.098 (7)	0.070 (4)	0.034 (3)	0.003 (5)	-0.020 (4)	-0.012 (2)
F3A	0.081 (5)	0.045 (2)	0.045 (3)	0.007 (3)	-0.004 (4)	-0.0009 (19)
F1B	0.092 (5)	0.079 (7)	0.040 (5)	-0.015 (5)	0.015 (4)	0.007 (4)
F2B	0.090 (7)	0.093 (6)	0.040 (4)	-0.004 (6)	0.009 (6)	-0.006 (4)
F3B	0.095 (7)	0.088 (7)	0.083 (7)	0.036 (6)	-0.005 (6)	0.020 (5)
O1	0.0366 (5)	0.0292 (5)	0.0457 (6)	-0.0035 (4)	0.0102 (4)	-0.0017 (4)
N1	0.0462 (8)	0.0456 (7)	0.0770 (10)	-0.0004 (6)	0.0265 (7)	0.0158 (7)
C1	0.0277 (6)	0.0294 (6)	0.0373 (7)	-0.0005 (5)	0.0057 (5)	0.0019 (5)
C2	0.0257 (6)	0.0314 (6)	0.0391 (7)	0.0030 (5)	0.0071 (5)	-0.0029 (5)
C3	0.0318 (6)	0.0339 (6)	0.0383 (7)	0.0031 (5)	0.0077 (5)	-0.0024 (5)
C4	0.0403 (7)	0.0446 (8)	0.0378 (7)	0.0080 (6)	0.0063 (6)	-0.0045 (6)

C5	0.0520 (9)	0.0505 (9)	0.0451 (9)	-0.0004 (7)	0.0027 (7)	-0.0155 (7)
C6	0.0462 (8)	0.0374 (7)	0.0575 (10)	-0.0054 (6)	0.0083 (7)	-0.0130 (7)
C7	0.0323 (6)	0.0316 (6)	0.0458 (8)	0.0015 (5)	0.0097 (6)	-0.0028 (5)
C8	0.0369 (7)	0.0427 (8)	0.0428 (8)	-0.0026 (6)	0.0093 (6)	0.0024 (6)
C9	0.0581 (10)	0.0584 (10)	0.0568 (10)	-0.0140 (8)	0.0227 (8)	0.0040 (8)
C10	0.0771 (13)	0.0818 (14)	0.0547 (11)	-0.0166 (11)	0.0343 (10)	-0.0042 (10)
C11	0.0743 (13)	0.0736 (13)	0.0495 (10)	-0.0156 (10)	0.0252 (9)	-0.0170 (9)
C12	0.0485 (9)	0.0528 (9)	0.0429 (8)	-0.0109 (7)	0.0111 (7)	-0.0079 (7)
C13	0.0311 (6)	0.0413 (7)	0.0357 (7)	-0.0030 (5)	0.0045 (5)	0.0006 (5)
C14	0.0584 (10)	0.0599 (10)	0.0412 (8)	0.0141 (8)	0.0076 (7)	-0.0022 (7)
C15	0.0296 (6)	0.0377 (7)	0.0538 (9)	0.0010 (5)	0.0028 (6)	0.0079 (6)
C16	0.0329 (7)	0.0379 (8)	0.0779 (12)	0.0043 (6)	0.0158 (7)	0.0000 (7)
C17	0.0317 (7)	0.0475 (9)	0.0802 (12)	0.0003 (6)	0.0158 (8)	0.0068 (8)
C18	0.072 (4)	0.133 (6)	0.089 (3)	0.010 (4)	0.037 (3)	0.057 (3)
C19	0.111 (6)	0.055 (3)	0.147 (6)	-0.028 (4)	0.055 (4)	0.011 (3)
C18A	0.077 (9)	0.056 (6)	0.063 (6)	-0.027 (6)	0.001 (6)	0.000 (5)
C19A	0.039 (5)	0.042 (6)	0.072 (7)	-0.007 (4)	0.014 (4)	-0.007 (5)

Geometric parameters (Å, °)

S1—C7	1.7535 (15)	С6—Н6А	0.9500
S1—C8	1.7602 (16)	C8—C9	1.392 (2)
F1—C14	1.354 (3)	C8—C13	1.397 (2)
F2—C14	1.370 (5)	C9—C10	1.374 (3)
F3—C14	1.280 (5)	С9—Н9А	0.9500
F1A-C14	1.360 (7)	C10—C11	1.381 (3)
F1A—F3A	2.102 (9)	C10—H10A	0.9500
F2A—C14	1.273 (8)	C11—C12	1.385 (2)
F3A—C14	1.357 (9)	C11—H11A	0.9500
F1B-C14	1.443 (10)	C12—C13	1.386 (2)
F2B—C14	1.237 (9)	C12—H12A	0.9500
F3B—C14	1.292 (10)	C15—C16	1.529 (2)
01—C1	1.4134 (15)	C15—H15A	0.9900
O1—H1A	0.87 (2)	C15—H15B	0.9900
N1—C18A	1.429 (14)	C16—C17	1.520 (2)
N1-C19	1.439 (8)	C16—H16A	0.9900
N1—C17	1.456 (2)	C16—H16B	0.9900
N1-C18	1.481 (7)	C17—H17A	0.9900
N1-C19A	1.517 (12)	C17—H17B	0.9900
C1—C13	1.5213 (19)	C18—H18A	0.9800
C1—C2	1.5263 (19)	C18—H18B	0.9800
C1—C15	1.5489 (19)	C18—H18C	0.9800
C2—C3	1.3873 (19)	C19—H19A	0.9800
C2—C7	1.3989 (19)	C19—H19B	0.9800
C3—C4	1.386 (2)	С19—Н19С	0.9800
С3—НЗА	0.9500	C18A—H18D	0.9800
C4—C5	1.388 (2)	C18A—H18E	0.9800
C4—C14	1.486 (2)	C18A—H18F	0.9800
C5—C6	1.374 (2)	C19A—H19D	0.9800

С5—Н5А	0.9500	C19A—H19E	0.9800
C6—C7	1.394 (2)	C19A—H19F	0.9800
C7—S1—C8	99.63 (7)	F3—C14—F1A	77.7 (5)
C1—O1—H1A	109.8 (15)	F3B—C14—F1A	122.8 (9)
C18A—N1—C19	101.1 (8)	F2B—C14—F2	64.3 (9)
C18A—N1—C17	118.6 (10)	F3A—C14—F2	87.4 (5)
C19—N1—C17	112.2 (6)	F3—C14—F2	106.0 (4)
C19—N1—C18	111.1 (5)	F1—C14—F2	101.1 (3)
C17—N1—C18	108.1 (6)	F3B-C14-F2	59.2 (9)
C18A—N1—C19A	107.5 (9)	F1A—C14—F2	130.2 (5)
C17—N1—C19A	103.5 (8)	F2B-C14-F1B	101.8 (7)
C18—N1—C19A	116.8 (9)	F3A—C14—F1B	73.0(7)
01	108.24 (11)	F2A—C14—F1B	131.2 (7)
01 - C1 - C2	110 70 (11)	F3—C14—F1B	48 9 (7)
$C_{13} - C_{1} - C_{2}$	108 84 (10)	F1-C14-F1B	68 4 (7)
01 - C1 - C15	111 19 (11)	F3B - C14 - F1B	99.1 (8)
C_{13} C_{1-} C_{15}	107.85 (11)	F^2 — $C14$ — $F1B$	138.9 (6)
C_{2} C_{1} C_{15}	109.92 (11)	F_2B — C_14 — C_4	116.4 (6)
C_{2}^{-} C_{1}^{-} C_{1}^{-} C_{1}^{-}	118 09 (13)	$F_{2D} = C_{14} = C_{4}$	111.1 (6)
$C_{3}^{2} - C_{2}^{2} - C_{1}^{2}$	120.40(12)	$F_{2A} = C_{14} = C_{4}$	115.3 (6)
C_{2}^{-}	120.40(12) 121.50(12)	$F_{2} = C_{14} = C_{4}$	115.5(0)
$C_1 = C_2 = C_1$	121.30(12) 120.78(13)	$F_1 = C_1 + C_4$	110.1(3)
$C_4 = C_3 = C_2$	110.6	$F_{1} = C_{14} = C_{4}$	111.4(2) 113.8(7)
$C_2 = C_3 = H_3 \Lambda$	119.0	$F_{14} = C_{14} = C_{4}$	113.8(7)
$C_2 = C_3 = H_3 R$	119.0	$F_{1A} = C_{14} = C_{4}$	110.0(3)
$C_3 = C_4 = C_3$	120.41(13) 110.20(15)	$F_2 \longrightarrow C_1 4 \longrightarrow C_4$	111.3(3)
$C_{5} = C_{4} = C_{14}$	119.50(15) 120.27(15)	$\Gamma_{1B} = C_{14} = C_{4}$	109.4(4)
$C_{5} - C_{4} - C_{14}$	120.27(13) 110.75(15)	$C_{10} = C_{15} = C_{15}$	107.0
C_{0}	119.75 (15)	C1 C15 H15A	107.9
C_{0}	120.1	C14 C15 U15D	107.9
C4—C3—n3A	120.1	C1 C15 U15P	107.9
$C_{5} = C_{6} = U_{6}$	119.85 (15)		107.9
C_{3}	120.1	ПІЗА—СІЗ—ПІЗВ СІ7. СІ6. СІ5.	107.2
C = C = C = C = C = C = C = C = C = C =	120.1	C17 - C16 - C13	113.14 (14)
$C_{0} - C_{1} - C_{2}$	121.02(14)	C1/-C10-HI0A	108.5
$C_0 - C_7 - S_1$	11/.41 (11)	C15 - C16 - H16A	108.5
$C_2 - C_1 - S_1$	121.55(11)	C1/-C10-H10B	108.5
$C_{9} = C_{8} = C_{13}$	120.08 (15)		108.5
C9—C8—S1	116.99 (12)	HI6A-CI6-HI6B	107.5
	122.30 (11)	NI-CI/-CI6	113.97 (13)
C10-C9-C8	119.86 (17)	NI—CI7—HI7A	108.8
C10—C9—H9A	120.1	СІ6—СІ/—НІ/А	108.8
C8—C9—H9A	120.1	NI—CI7—HI7B	108.8
	120.25 (17)	С16—С17—Н17В	108.8
C9—C10—H10A	119.9	HI/A—CI/—HI/B	107.7
C11—C10—H10A	119.9	NI-CI8-HI8A	109.5
C10—C11—C12	119.87 (17)	NI-C18-H18B	109.5
C10—C11—H11A	120.1	H18A—C18—H18B	109.5
C12—C11—H11A	120.1	N1—C18—H18C	109.5
C13—C12—C11	121.09 (16)	H18A—C18—H18C	109.5

C13—C12—H12A	119.5	H18B—C18—H18C	109.5
C11—C12—H12A	119.5	N1—C19—H19A	109.5
C12—C13—C8	118.20 (14)	N1-C19-H19B	109.5
C12—C13—C1	121.02 (13)	H19A—C19—H19B	109.5
C8—C13—C1	120.74 (13)	N1—C19—H19C	109.5
F2B	130.8 (9)	H19A—C19—H19C	109.5
F3A—C14—F2A	106.6 (6)	H19B—C19—H19C	109.5
F2B—C14—F3	126.1 (7)	N1—C18A—H18D	109.5
F2A—C14—F3	119.6 (6)	N1—C18A—H18E	109.5
F3A—C14—F1	129.6 (6)	H18D—C18A—H18E	109.5
F2A—C14—F1	77.8 (5)	N1—C18A—H18F	109.5
F3—C14—F1	109.7 (3)	H18D—C18A—H18F	109.5
F2B-C14-F3B	113.9 (9)	H18E—C18A—H18F	109.5
F2A—C14—F3B	80.3 (9)	N1—C19A—H19D	109.5
F3—C14—F3B	51.2 (9)	N1—C19A—H19E	109.5
F1—C14—F3B	134.7 (7)	H19D—C19A—H19E	109.5
F2B-C14-F1A	73.7 (9)	N1—C19A—H19F	109.5
F3A-C14-F1A	101.4 (6)	H19D—C19A—H19F	109.5
F2A—C14—F1A	110.8 (6)	H19E—C19A—H19F	109.5
O1—C1—C2—C3	-16.56 (16)	F1A—F3A—C14—F3	-10(2)
C13—C1—C2—C3	-135.40 (12)	F1A—F3A—C14—F1	28.2 (6)
C15—C1—C2—C3	106.68 (14)	F1A—F3A—C14—F3B	141.1 (17)
O1—C1—C2—C7	164.96 (11)	F1A—F3A—C14—F2	130.6 (5)
C13—C1—C2—C7	46.11 (16)	F1A—F3A—C14—F1B	-12.8 (7)
C15—C1—C2—C7	-71.81 (15)	F1A—F3A—C14—C4	-117.6 (5)
C7—C2—C3—C4	3.40 (19)	F3A—F1A—C14—F2B	-129.4 (9)
C1—C2—C3—C4	-175.14 (12)	F3A—F1A—C14—F2A	-112.9 (7)
C2—C3—C4—C5	-0.8 (2)	F3A—F1A—C14—F3	4.3 (8)
C2—C3—C4—C14	177.44 (13)	F3A—F1A—C14—F1	-143.5 (7)
C3—C4—C5—C6	-2.0 (2)	F3A—F1A—C14—F3B	-21.1 (10)
C14—C4—C5—C6	179.71 (15)	F3A—F1A—C14—F2	-96.4 (8)
C4—C5—C6—C7	2.2 (2)	F3A—F1A—C14—F1B	24.2 (13)
C5—C6—C7—C2	0.4 (2)	F3A—F1A—C14—C4	117.9 (6)
C5—C6—C7—S1	-177.87 (13)	C3—C4—C14—F2B	-153.9 (11)
C3—C2—C7—C6	-3.2 (2)	C5—C4—C14—F2B	24.4 (11)
C1—C2—C7—C6	175.29 (13)	C3—C4—C14—F3A	39.4 (6)
C3—C2—C7—S1	175.02 (10)	C5—C4—C14—F3A	-142.3 (6)
C1—C2—C7—S1	-6.46 (17)	C3—C4—C14—F2A	160.8 (7)
C8—S1—C7—C6	149.19 (12)	C5—C4—C14—F2A	-20.9 (7)
C8—S1—C7—C2	-29.12 (12)	C3—C4—C14—F3	13.7 (5)
C7—S1—C8—C9	-148.84 (14)	C5—C4—C14—F3	-168.1 (4)
C7—S1—C8—C13	29.48 (14)	C3—C4—C14—F1	-112.9 (4)
C13—C8—C9—C10	-0.8 (3)	C5—C4—C14—F1	65.4 (4)
S1—C8—C9—C10	177.53 (17)	C3—C4—C14—F3B	70.5 (11)
C8—C9—C10—C11	-0.9 (3)	C5—C4—C14—F3B	-111.2 (11)
C9—C10—C11—C12	0.9 (4)	C3—C4—C14—F1A	-72.4 (8)
C10-C11-C12-C13	0.7 (3)	C5—C4—C14—F1A	105.9 (8)
C11—C12—C13—C8	-2.3 (3)	C3—C4—C14—F2	135.1 (4)
C11—C12—C13—C1	175.65 (16)	C5-C4-C14-F2	-46.7 (4)

C9—C8—C13—C12	2.4 (2)	C3—C4—C14—F1B	-39.2 (8)
S1—C8—C13—C12	-175.88 (12)	C5-C4-C14-F1B	139.0 (8)
C9—C8—C13—C1	-175.60 (15)	O1-C1-C15-C16	64.51 (17)
S1—C8—C13—C1	6.1 (2)	C13-C1-C15-C16	-176.96 (12)
O1—C1—C13—C12	16.06 (18)	C2-C1-C15-C16	-58.43 (16)
C2-C1-C13-C12	136.43 (14)	C1-C15-C16-C17	-86.15 (18)
C15-C1-C13-C12	-104.34 (16)	C18A—N1—C17—C16	84.4 (9)
O1—C1—C13—C8	-166.03 (13)	C19—N1—C17—C16	-158.3 (5)
C2-C1-C13-C8	-45.65 (17)	C18—N1—C17—C16	78.8 (4)
C15—C1—C13—C8	73.57 (16)	C19A—N1—C17—C16	-156.7 (7)
F1A—F3A—C14—F2B	78.2 (12)	C15-C16-C17-N1	71.3 (2)
F1A—F3A—C14—F2A	116.0 (6)		

Hydrogen-bond geometry (Å, °)

nyurogen bonu geometry (n,)				
Cg2 and Cg3 are the centroids of the	C2–C7 and C8–C13 ring	gs, respectively.		
D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1A···N1	0.87 (2)	1.84 (2)	2.7141 (17)	176 (2)
C15—H15A…S1	0.99	2.76	3.4165 (15)	124.
C5—H5A···Cg3 ⁱ	0.95	2.96	3.798 (3)	148
C17—H17A····Cg2 ⁱⁱ	0.99	2.97	3.949 (3)	170
C17—H17B···Cg3 ⁱⁱ	0.99	2.83	3.659 (3)	142
Symmetry codes: (i) $x-1/2$, $-y+1/2$, $z-1/2$	2; (ii) $x = 1, y, z$.			

